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J. Phys. A: Math.  Gen.  20 (1987) L263-L267. Printed in the U K  

LETTER TO THE EDITOR 

Classification of subalgebras in the symplectic model 

Joris Van der Jeugtt and Hans de  Meyert 
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit Gent,  Krijgslaan 281-S9, 89000 
Gent ,  Belgium 

Received 16 December 1986 

Abstract. An so()) tensor realisation for the Lie algebra sp(3,  R )  of the symplectic nuclear 
collective model is given. In this realisation, a complete classification of all subalgebras 
of sp(3,  R )  that  contain the physical angular momentum algebra so(3) is obtained. 

The symplectic shell model provides a natural framework for the simultaneous macro- 
scopic and microscopic description of nuclear quadrupole collective dynamics. An 
excellent review article on this subject has been published recently (Rowe 19851, and 
we shall adopt the notation of this paper here. The rich structure of the symplectic 
shell model is described by its dynamical group Sp(3, R ) .  Recently, Moshinsky (1986) 
asked whether a complete analysis could be given of the subalgebras of sp(3, R )  
containing the physical so(3) subalgebra. It is the aim of this letter to provide an 
answer to this question. We have chosen a simple and straightforward method. First, 
the sp(3, R )  basis elements are realised in terms of so(3) tensor operators. Then it is 
obvious that for any subalgebra of sp(3, R )  that contains so(3), a basis of so(3) tensor 
operators must exist. Hence, one can systematically consider all subspaces spanned 
by a set of complete tensor operators and investigate if the space actually forms a Lie 
algebra. 

A common basis for sp(3, R )  is given by the six Cartesian quadrupole moments 
(Q,,), the nine gl(3, R )  generators of deformations and rotations ( S , , ,  L,)  and the six 
components of the quadrupole flow tensor ( K , )  

7 

where x,, and pr, ( i  = 1 , 2 , 3 )  are the components of position and  momentum of the 
nucleon and X7 indicates the summation over all nucleons of the system. In the rest 
of this letter, the summation 1, will be suppressed, since it has no influence in the 
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classification of subalgebras. Hence Q,, = x,x,, L,, = x ,p ,  - x ,p , ,  etc. The commutation 
relations of the operators ( 1 )  are determined by 

[x , ,  P k 1  = i%.  ( 2 )  

b :=(1 /d2) (x , - ipJ )  bJ = ( / d 2  ( '1 + 'PJ (3 )  

E b j ,  bll = (4) 

A,J = b: b: B,, = 0, C,, = +( 6: b, + b,b:) ( i , j = l , 2 , 3 ) .  ( 5 )  

It is convenient to define raising and lowering operators 

satisfying 

and giving rise to a new basis for sp(3, R ) :  

The operators C,J span the u(3) subalgebra of sp(3, R ) ,  and the physical so(3) sub- 
algebra is spanned by the L,,, or equivalently by i(C,, - C,,). We define the spherical 
components of b:+' by 

T O ' =  b: ro = b, 
(6) 

r:, = T ( l / d 2 ) ( 6 : k i b : )  T * ~  = F ( l / ~ ' 2 ) ( 6 ~ * i 6 ~ ) .  

The only non-vanishing commutators among these components are 

The elements T; and GP = ( - l ) p ~ . . . P  ( p  = - 1 , O ,  1 )  form an so(3) tensor of rank 1 .  
By means of these spherical components one defines 

[TP,  573 = ql". ( 7 )  

G',k'= [r+ x 7;]Lk'+(-l)k[7; x r']',"' 

7.y = [T+  x r+](Kk)  

( k = 0 , 1 , 2 )  
(8) Up' = [ 7; x 7 ; p  ( k = 0 , 2 )  

where 

[ r t X  ( l p l v l k K ) r ~ $ ,  ( 9 )  
P. y 

and ( I ) is an so(3) coupling coefficient (Edmonds 1957). The commutation relations 
among the basis elements (8) are then expressed by means of 3 j  and 6 j  symbols: 

[GLk), CL:"]= (-1)"" '[(2k+ 1)(2k'+1)(2k"+ 
k ' , " "  

[ 7.:4')] = (-1)"""[(2k+ 1)(2k'+ 1)(2k"+ 
k " , ~ "  

[GLk', TLk"] = ( -1)""+'[(2k+ 1)(2k'+ 1)(2k"+ 
k " K "  
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Note that Gk” ( K  = -1, 0, 1) are the spherical components of the angular momentum 
subalgebra so(3). Let ( e , ,  e,, . . . , e,,) denote the subspace spanned by e, ,  e2, . . . , e,,; 
then 

(GL’)) = ( Lli) = (C, - C,,) 

(Gi”, GL2’) = (C, + Gi)  
(Ti”,  T‘,”)= (Au)  

( U r ’ ,  = ( E , ) .  

In order to classify the (real) subalgebras of sp(3, R )  containing so(3), we have 
systematically investigated which so(3) tensors can be put together to form a Lie 
algebra. The linear combinations of tensor operators that will be considered in the 
following are supposed to be real combinations. Note that in fact also complex com- 
binations are allowed, as long as all structure constants remain real. The results of 
our investigation are as follows. 

6) L1 =(G:), aTho’+ bubo’+ cG~O’). 

Here, a, b and c are arbitrary numbers. This Lie algebra is isomorphic to so(3)0u( l ) .  

(ii) L2=(G:’, U T ~ ’ + ~ U ~ ~ ’ + C G ~ ~ ’ ,  a’Tio’+ ~ ’ U ~ ’ + C ’ G ~ ~ ’ ) .  

This forms a Lie algebra if and only if the rank zero tensors (or a linear combination 
of them) satisfy 

(15) 

(16) 

a’b‘ - cI2 = 0 

a‘b + ab’ = 2cc’. 

The Lie algebra L, is a semidirect product of the reductive Lie algebra so(3)@u(l)  
with a one-dimensional module. 

L - (G(1) T(0) U(0) (i i i)  3 -  I( 9 0 , 0 Y GbO’). 

It is easy to verify that (Ti”,  Ub”, Gi”) is the basis of sp(1, R ) .  Hence L,*so(3)@ 
sp(1, R).  This completes all possibilities of Lie algebras spanned by the 1-tensor G:) 
and combinations of 0-tensors. Now we systematically bring in 2-tensors. 

(iv) L4 = (GL”, UT:) + b U:’ + cGF’). 

This always forms a Lie algebra. In order to recognise it, observe that (lo)-( 12) leads 
to 

[UT:’+ bU:’+cG:’, aT12’+ bU!,2’+cGL2’] 

Hence there are three cases: 

c’- ab > O+L,= L: S U ( ~ )  

c’- ab =0*L4= L t z  so(3) x R‘‘] 

c2 - ab < O*L4 = L; = sI(3, I?). 
(18) 
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Only for c2 - ab = 0 is the Lie algebra not simple, but the semidirect product of so(3) 
with a five-dimensional module which is a 2-tensor. 

(v )  L5 = (Gy’, aTF’+ b u y ’ +  c G f ’ ,  a‘Tbo’+ b’ULo’+ C’Gr’). 

There are again three possibilities: either ab - c2 # 0, in which case (a ’ ,  b‘, c’) must be 
proportional to ( a ,  b, c) and the algebra is L: = u(3) (c2 - ab > 0 )  or L; = gl(3, R )  
( c2 -  ab < 0); or else ab - c2 = 0, and (a ‘ ,  b’, c’) must satisfy ab’+ a’b = 2cc’ and L: = 
[so(3)@u(l)]  x P is a semidirect product, with P transforming as a 2-tensor under 
so(3) and as a one-dimensional representation under U (  1). 

L6 = (GV’, aTz’+ bUF’+ cGF’, UT:’+ bULo’+ cGL”, u ’ T ~ ’  (vi) 

+ b’Ub’’+ c’G“’). 
This forms a ten-dimensional Lie algebra if and only if ab - c2 = 0 and a’b + ab’ = 2cc’. 
Then L6 is a semidirect product [ so (3 )Ou( l ) ]  x P, with u(1) =(a”;’’+ b’U:’+c’Gb’’) 
and P the direct sum of a five-dimensional module (UT:’+ bU:’+ cGF’) (transforming 
as a 2-tensor under so(3) and a one-dimensional irrep under u(1)) and a one- 
dimensional module (UT;’’ + b u r ’ +  cGb”). 

It turns out that the space spanned by the three 0-tensors, one I-tensor and one 
2-tensor does not close under commutation. Hence, in the following we bring in two 
2-tensors. The space spanned by one 1-tensor and two 2-tensors does not form a Lie 
algebra, unless we also introduce a 0-tensor: 

L, = (G‘,L’, aTr’+ b u r ’ +  cGr’ ,  UT:’+ b u y ’ +  cGz’ ,  a’T12’ (viii) 

+ b’Ui2’+ c’GL2’). 
This fourteen-dimensional vector space closes under commutation if ab - c2 = 0 and 
a’b + ab’ = 2cc‘; then a’b‘- c” # 0. The Lie algebra L7 is isomorphic to L: = su(3) x P 
or L; = sI(3, R )  x P, depending on the sign of c” - a‘6’; P = (aTr ’+  bUh”+ cGk’’, 
UT:’+ bUF’+ cG:’) is a six-dimensional irreducible su(3) or sI(3, R )  module. 

(viii) L 8 -  -(GY’, a ’ T f ’ +  b‘U~’’+c’GL’’, a’TF’+ b’UF’+c‘G?’, aTho’+ bUb” 

+ cGh”, UT!,*’+ bU12’+ cGL2’). 
This is a fifteen-dimensional Lie algebra if ab - c2 = 0 and a‘b + ab‘ = 2cc’; then a’b‘ - 
c12 # 0. It is again a semidirect product L,’ = u(3) x P or L, = gl(3, R )  x P (* is the 
sign of d 2  - a’b‘), where P is a six-dimensional irreducible module spanned by the 
0-tensor and 2-tensor with coefficients (a ,  b, c). 

This exhausts all subalgebras of sp(3, R )  containing so(3). The complete subalgebra 
chain is given in figure 1. 

Until now only real linear combinations have been maintained. The above results 
are also valid for complex combinations (complex a, b, c, a’ ,  b’, c’) if the coefficients 
still satisfy 

(19) 
Then i t  can be checked by means of ( IO)- (  13) that the structure constants are still real 
coefficients. 

Note that the subalgebras L , ,  . . . , L, given in  terms of coupled so(3) tensors can 
also be described in terms of the original Cartesian products ( 1 ) .  For instance, by 
means of (1)-(5) and (14) one verifies that 
( a T f ’ +  bUI:’+ cGir’, UT?’+ bU;’’+ cGF’) 

a’b-ab‘(+ CYCI), ab-c’, a’bl-~’’ ,  a ’ b + a b ’ - 2 ~ ~ ’ E  R .  

= ( ( a  + b+2c)Ql,+(-a - b+2c)Kl, +i(-a+ b)S,,) .  (20) 
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\ 
Figure 1. Subalgebra chain for sp(3, R)- ,so(3) .  The subalgebras L, are described in the 
text. A line from left to right connecting L, and L, implies L,  2 L,; the lines connecting 
subalgebras from the upper part (starting from L i )  with subalgebras from the lower part 
(starting from L3) are broken. 

Hence 

L=(L,,  f f Q , + P K , + Y S , )  (21) 

forms a nine-dimensional Lie algebra of type L5. The algebra (L,,, S , )  arises when 
a = p = 0 and y # 0, or equivalently when a = - b  E iR and c = 0; it is clearly isomorphic 
to gl(3, R ) .  Another realisation of gl(3, R)  is the algebra (L,,, Q, - K ,  = xlx, -p ,p , ) ;  
this Lie algebra is obtained for CY = - p  and y = 0, or equivalently for a = b # 0 and 
c = O .  When CY = p  and y = 0, or a = b = 0 and c # 0, the Lie algebra is (L, ,  Q,J + K ,  = 
xfx, + p f p , )  and is isomorphic to u(3). In  general, one can check that c 2  - ab has the 
same sign as ap - y 2 ,  hence (21) is u(3), so(3) x Rt2] or gl(3, R )  when cxp - y 2  is 
positive, zero or negative, respectively. 

The realisation (10)-(13) given in terms of a pseudo p-boson T with angular 
momentum 1 can easily be extended to an arbitrary pseudo boson with angular 
momentum 1. The Lie algebra that arises is the symplectic algebra sp(21+ 1, R).  The 
commutation relations for such a realisation are simply a copy of (10)-(13) with 
(- l )K +' replaced by ( - l ) K  +' and {! :} by { f  ",. 
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