Classification of subalgebras in the symplectic model

This article has been downloaded from IOPscience. Please scroll down to see the full text article.
1987 J. Phys. A: Math. Gen. 20 L263
(http://iopscience.iop.org/0305-4470/20/5/001)
View the table of contents for this issue, or go to the journal homepage for more

Download details:
IP Address: 129.252.86.83
The article was downloaded on 01/06/2010 at 05:24

Please note that terms and conditions apply.

LETTER TO THE EDITOR

Classification of subalgebras in the symplectic model

Joris Van der Jeugt \dagger and Hans de Meyer \ddagger
Seminarie voor Wiskundige Natuurkunde, Rijksuniversiteit Gent, Krijgslaan 281-S9, B9000 Gent, Belgium

Received 16 December 1986

Abstract

An so(3) tensor realisation for the Lie algebra sp(3,R) of the symplectic nuclear collective model is given. In this realisation, a complete classification of all subalgebras of $\operatorname{sp}(3, R)$ that contain the physical angular momentum algebra $s o(3)$ is obtained.

The symplectic shell model provides a natural framework for the simultaneous macroscopic and microscopic description of nuclear quadrupole collective dynamics. An excellent review article on this subject has been published recently (Rowe 1985), and we shall adopt the notation of this paper here. The rich structure of the symplectic shell model is described by its dynamical group $\operatorname{Sp}(3, R)$. Recently, Moshinsky (1986) asked whether a complete analysis could be given of the subalgebras of $\operatorname{sp}(3, R)$ containing the physical so(3) subalgebra. It is the aim of this letter to provide an answer to this question. We have chosen a simple and straightforward method. First, the $\operatorname{sp}(3, R)$ basis elements are realised in terms of so(3) tensor operators. Then it is obvious that for any subalgebra of $\operatorname{sp}(3, R)$ that contains so(3), a basis of so(3) tensor operators must exist. Hence, one can systematically consider all subspaces spanned by a set of complete tensor operators and investigate if the space actually forms a Lie algebra.

A common basis for $\mathrm{sp}(3, R)$ is given by the six cartesian quadrupole moments ($Q_{i j}$), the nine $\mathrm{gl}(3, R)$ generators of deformations and rotations ($S_{i j}, L_{i j}$) and the six components of the quadrupole flow tensor ($K_{i j}$)

$$
\begin{align*}
& Q_{i j}=\sum_{s} x_{\mathrm{s} i} x_{\mathrm{y} j} \\
& S_{i j}=\sum_{s}\left(x_{s i} p_{s j}+p_{s i} x_{v j}\right) \\
& L_{i j}=\sum_{s}\left(x_{s i} p_{s j}-x_{\mathrm{v} j} p_{\mathrm{si}}\right) \tag{1}\\
& K_{i j}=\sum_{s} p_{v i} p_{\mathrm{s} j}
\end{align*}
$$

where $x_{5 i}$ and $p_{s t}(i=1,2,3)$ are the components of position and momentum of the nucleon and Σ_{s} indicates the summation over all nucleons of the system. In the rest of this letter, the summation Σ, will be suppressed, since it has no influence in the

[^0]classification of subalgebras. Hence $Q_{i j}=x_{i} x_{j}, L_{i j}=x_{i} p_{j}-x_{i} p_{i}$, etc. The commutation relations of the operators (1) are determined by
\[

$$
\begin{equation*}
\left[x_{j}, p_{k}\right]=\mathrm{i} \delta_{j k} . \tag{2}
\end{equation*}
$$

\]

It is convenient to define raising and lowering operators

$$
\begin{equation*}
b_{j}^{+}=(1 / \sqrt{ } 2)\left(x_{j}-\mathrm{i} p_{j}\right) \quad b_{j}=(1 / \sqrt{ } 2)\left(x_{j}+i p_{j}\right) \tag{3}
\end{equation*}
$$

satisfying

$$
\begin{equation*}
\left[b_{j}, b_{k}^{+}\right]=\delta_{j k} \tag{4}
\end{equation*}
$$

and giving rise to a new basis for $\operatorname{sp}(3, R)$:

$$
\begin{equation*}
A_{i j}=b_{i}^{+} b_{j}^{+} \quad B_{i j}=b_{i} b_{j} \quad C_{i j}=\frac{1}{2}\left(b_{i}^{+} b_{j}+b_{j} b_{i}^{+}\right) \quad(i, j=1,2,3) \tag{5}
\end{equation*}
$$

The operators $C_{i j}$ span the $u(3)$ subalgebra of $\mathrm{sp}(3, R)$, and the physical so(3) subalgebra is spanned by the $L_{i i}$, or equivalently by $\mathrm{i}\left(C_{j i}-C_{i j}\right)$. We define the spherical components of $b_{j}^{(+)}$by

$$
\begin{array}{ll}
\pi_{0}^{+}=b_{3}^{+} & \pi_{0}=b_{3} \\
\pi_{ \pm 1}^{+}=\mp(1 / \sqrt{ } 2)\left(b_{1}^{+} \pm \mathrm{i} b_{2}^{+}\right) & \pi_{ \pm 1}=\mp(1 / \sqrt{ } 2)\left(b_{1} \mp \mathrm{i} b_{2}\right) . \tag{6}
\end{array}
$$

The only non-vanishing commutators among these components are

$$
\begin{equation*}
\left[\pi_{\mu}, \pi_{\nu}^{+}\right]=\delta_{\mu \nu} \tag{7}
\end{equation*}
$$

The elements π_{μ}^{+}and $\tilde{\pi}_{\mu}=(-1)^{\mu} \pi_{-\mu}(\mu=-1,0,1)$ form an so(3) tensor of rank 1 . By means of these spherical components one defines

$$
\begin{array}{llr}
G_{\kappa}^{(k)}=\left[\pi^{+} \times \tilde{\pi}\right]_{\kappa}^{(k)}+(-1)^{k}\left[\tilde{\pi} \times \pi^{+}\right]_{\kappa}^{(k)} & (k=0,1,2) \\
T_{\kappa}^{(k)}=\left[\pi^{+} \times \pi^{+}\right]_{\kappa}^{(k)} & U_{\kappa}^{(k)}=[\tilde{\pi} \times \tilde{\pi}]_{\kappa}^{(k)} & (k=0,2) \tag{8}
\end{array}
$$

where

$$
\begin{equation*}
\left[\pi^{+} \times \tilde{\pi}\right]_{\kappa}^{(k)}=\sum_{\mu, \nu}\langle 1 \mu 1 \nu \mid k \kappa\rangle \pi_{\mu}^{+} \tilde{\pi}_{\nu} \tag{9}
\end{equation*}
$$

and $\langle |$) is an so(3) coupling coefficient (Edmonds 1957). The commutation relations among the basis elements (8) are then expressed by means of $3 j$ and $6 j$ symbols:

$$
\begin{align*}
{\left[G_{\kappa}^{(k)}, G_{\kappa^{\prime}}^{\left(\kappa^{\prime}\right)}\right]=} & \sum_{k^{\prime \prime}, \kappa^{\prime \prime}}(-1)^{\kappa^{\prime \prime+}}\left[(2 k+1)\left(2 k^{\prime}+1\right)\left(2 k^{\prime \prime}+1\right)\right]^{1 / 2} \\
& \times\left(\begin{array}{ccc}
k & k^{\prime} & k^{\prime \prime} \\
\kappa & \kappa^{\prime} & -\kappa^{\prime \prime}
\end{array}\right)\left\{\begin{array}{ccc}
k & k^{\prime} & k^{\prime \prime} \\
1 & 1 & 1
\end{array}\right\} 2\left[(-1)^{k+k^{\prime}+k^{\prime \prime}}-1\right] G_{\kappa^{\prime \prime}}^{\left(k^{\prime \prime}\right)} \tag{10}\\
{\left[U_{\kappa}^{(k)}, T_{\kappa^{\prime}}^{\left.\left(k^{\prime}\right)\right]=}\right.} & \sum_{k^{\prime \prime}, \kappa^{\prime \prime}}(-1)^{\kappa^{\prime \prime+}+1}\left[(2 k+1)\left(2 k^{\prime}+1\right)\left(2 k^{\prime \prime}+1\right)\right]^{1 / 2} \\
& \times\left(\begin{array}{llr}
k & k^{\prime} & k^{\prime \prime} \\
\kappa & \kappa^{\prime} & -\kappa^{\prime \prime}
\end{array}\right)\left\{\begin{array}{ccc}
k & k^{\prime} & k^{\prime \prime} \\
1 & 1 & 1
\end{array}\right\} 2 G_{\kappa^{\prime \prime}}^{\left(k^{\prime \prime}\right)} \tag{11}\\
{\left[G_{\kappa}^{(k)}, T_{\kappa^{\prime}}^{\left.\left(k^{\prime}\right)\right]=}\right.} & \sum_{k^{\prime \prime} \kappa^{\prime \prime}}(-1)^{\kappa^{\prime \prime}+1}\left[(2 k+1)\left(2 k^{\prime}+1\right)\left(2 k^{\prime \prime}+1\right)\right]^{1 / 2} \\
& \times\left(\begin{array}{llr}
k & k^{\prime} & k^{\prime \prime} \\
\kappa & \kappa^{\prime} & -\kappa^{\prime \prime}
\end{array}\right)\left\{\begin{array}{ccc}
k & k^{\prime} & k^{\prime \prime} \\
1 & 1 & 1
\end{array}\right\} 4(-1)^{k} T_{\kappa^{\prime \prime}}^{\left(k^{\prime \prime}\right)} \tag{12}\\
{\left[G_{\kappa}^{(k)}, U_{\kappa^{\prime}}^{\left(k^{\prime}\right)}\right]=} & \sum_{k^{\prime \prime} \kappa^{\prime \prime}}(-1)^{\kappa^{\prime \prime+}}\left[(2 k+1)\left(2 k^{\prime}+1\right)\left(2 k^{\prime \prime}+1\right)\right]^{1 / 2} \\
& \times\left(\begin{array}{rrr}
k & k^{\prime} & k^{\prime \prime} \\
\kappa & \kappa^{\prime} & -\kappa^{\prime \prime}
\end{array}\right)\left\{\begin{array}{lll}
k & k^{\prime} & k^{\prime \prime} \\
1 & 1 & 1
\end{array}\right\}(-4) U_{\kappa^{\prime \prime}}^{\left(k^{\prime \prime}\right)} . \tag{13}
\end{align*}
$$

Note that $G_{\kappa}^{(1)}(\kappa=-1,0,1)$ are the spherical components of the angular momentum subalgebra so(3). Let $\left\langle e_{1}, e_{2}, \ldots, e_{n}\right\rangle$ denote the subspace spanned by $e_{1}, e_{2}, \ldots, e_{n}$; then

$$
\begin{align*}
& \left\langle G_{\kappa}^{(1)}\right\rangle=\left\langle L_{i j}\right\rangle=\left\langle C_{i j}-C_{j i}\right\rangle \\
& \left\langle G_{0}^{(0)}, G_{\kappa}^{(2)}\right\rangle=\left\langle C_{i j}+C_{j i}\right\rangle \\
& \left\langle T_{0}^{(0)}, T_{\kappa}^{(2)}\right\rangle=\left\langle A_{i j}\right\rangle \tag{14}\\
& \left\langle U_{0}^{(0)}, U_{\kappa}^{(2)}\right\rangle=\left\langle B_{i j}\right\rangle .
\end{align*}
$$

In order to classify the (real) subalgebras of $\mathrm{sp}(3, R)$ containing so(3), we have systematically investigated which so(3) tensors can be put together to form a Lie algebra. The linear combinations of tensor operators that will be considered in the following are supposed to be real combinations. Note that in fact also complex combinations are allowed, as long as all structure constants remain real. The results of our investigation are as follows.

$$
\begin{equation*}
\mathrm{L}_{1}=\left\langle G_{\kappa}^{(1)}, a T_{0}^{(0)}+b U_{0}^{(0)}+c G_{0}^{(0)}\right\rangle \tag{i}
\end{equation*}
$$

Here, a, b and c are arbitrary numbers. This Lie algebra is isomorphic to so $(3) \oplus \mathrm{u}(1)$.

$$
\begin{equation*}
\mathrm{L}_{2}=\left\langle G_{\kappa}^{(1)}, a T_{0}^{(0)}+b U_{0}^{(0)}+c G_{0}^{(0)}, a^{\prime} T_{0}^{(0)}+b^{\prime} U_{0}^{(0)}+c^{\prime} G_{0}^{(0)}\right\rangle \tag{ii}
\end{equation*}
$$

This forms a Lie algebra if and only if the rank zero tensors (or a linear combination of them) satisfy

$$
\begin{align*}
& a^{\prime} b^{\prime}-c^{\prime 2}=0 \tag{15}\\
& a^{\prime} b+a b^{\prime}=2 c c^{\prime} \tag{16}
\end{align*}
$$

The Lie algebra L_{2} is a semidirect product of the reductive Lie algebra so(3) $\oplus u(1)$ with a one-dimensional module.

$$
\begin{equation*}
\mathrm{L}_{3}=\left\langle G_{\kappa}^{(1)}, T_{0}^{(0)}, U_{0}^{(0)}, G_{0}^{(0)}\right\rangle \tag{iii}
\end{equation*}
$$

It is easy to verify that $\left\langle T_{0}^{(0)}, U_{0}^{(0)}, G_{0}^{(0)}\right\rangle$ is the basis of $\operatorname{sp}(1, R)$. Hence $L_{3} \simeq \operatorname{so}(3) \oplus$ $\mathrm{sp}(1, R)$. This completes all possibilities of Lie algebras spanned by the 1-tensor $G_{\kappa}^{(1)}$ and combinations of 0 -tensors. Now we systematically bring in 2 -tensors.

$$
\begin{equation*}
\mathrm{L}_{4}=\left\langle G_{\kappa}^{(1)}, a T_{\mu}^{(2)}+b U_{\mu}^{(2)}+c G_{\mu}^{(2)}\right\rangle \tag{iv}
\end{equation*}
$$

This always forms a Lie algebra. In order to recognise it, observe that (10)-(12) leads to

$$
\begin{align*}
& {\left[a T_{\mu}^{(2)}+b U_{\mu}^{(2)}+c G_{\mu}^{(2)}, a T_{\nu}^{(2)}+b U_{\nu}^{(2)}+c G_{\nu}^{(2)}\right]} \\
& \quad=\sum_{\kappa}(-1)^{\kappa+1} 5 \sqrt{ } 3\left(\begin{array}{ccc}
2 & 2 & 1 \\
\mu & \nu & -\kappa
\end{array}\right)\left\{\begin{array}{lll}
2 & 2 & 1 \\
1 & 1 & 1
\end{array}\right\}\left(c^{2}-a b\right)(-4) G_{\kappa}^{(1)} . \tag{17}
\end{align*}
$$

Hence there are three cases:

$$
\begin{align*}
& c^{2}-a b>0 \Rightarrow \mathrm{~L}_{4}=\mathrm{L}_{4}^{+} \simeq \operatorname{su}(3) \\
& c^{2}-a b=0 \Rightarrow \mathrm{~L}_{4}=\mathrm{L}_{4}^{0}=\operatorname{so}(3) \times R^{[2]} \tag{18}\\
& c^{2}-a b<0 \Rightarrow \mathrm{~L}_{4}=\mathrm{L}_{4}^{-} \simeq \operatorname{sl}(3, R)
\end{align*}
$$

Only for $c^{2}-a b=0$ is the Lie algebra not simple, but the semidirect product of so(3) with a five-dimensional module which is a 2 -tensor.

$$
\begin{equation*}
\mathrm{L}_{5}=\left\langle G_{\kappa}^{(1)}, a T_{\mu}^{(2)}+b U_{\mu}^{(2)}+c G_{\mu}^{(2)}, a^{\prime} T_{0}^{(0)}+b^{\prime} U_{0}^{(0)}+c^{\prime} G_{0}^{(0)}\right\rangle \tag{v}
\end{equation*}
$$

There are again three possibilities: either $a b-c^{2} \neq 0$, in which case ($a^{\prime}, b^{\prime}, c^{\prime}$) must be proportional to (a, b, c) and the algebra is $\mathrm{L}_{s}^{+}=\mathrm{u}(3)\left(c^{2}-a b>0\right)$ or $\mathrm{L}_{5}^{-}=\mathrm{gl}(3, R)$ $\left(c^{2}-a b<0\right)$; or else $a b-c^{2}=0$, and ($a^{\prime}, b^{\prime}, c^{\prime}$) must satisfy $a b^{\prime}+a^{\prime} b=2 c c^{\prime}$ and $\mathrm{L}_{5}^{0}=$ $[s o(3) \oplus \mathrm{u}(1)] \times P$ is a semidirect product, with P transforming as a 2 -tensor under so(3) and as a one-dimensional representation under $u(1)$.

$$
\begin{align*}
\mathrm{L}_{6}= & \left\langle G_{\kappa}^{(1)}, a T_{\mu}^{(2)}+b U_{\mu}^{(2)}+c G_{\mu}^{(2)}, a T_{0}^{(0)}+b U_{0}^{(0)}+c G_{0}^{(0)}, a^{\prime} T_{0}^{(0)}\right. \tag{vi}\\
& \left.+b^{\prime} U_{0}^{(0)}+c^{\prime} G_{0}^{(0)}\right\rangle
\end{align*}
$$

This forms a ten-dimensional Lie algebra if and only if $a b-c^{2}=0$ and $a^{\prime} b+a b^{\prime}=2 c c^{\prime}$. Then L_{6} is a semidirect product $[\operatorname{so}(3) \oplus \mathrm{u}(1)] \times P$, with $\mathrm{u}(1)=\left\langle a^{\prime} T_{0}^{(0)}+b^{\prime} U_{0}^{(0)}+c^{\prime} G_{0}^{(0)}\right\rangle$ and P the direct sum of a five-dimensional module $\left\langle a T_{\mu}^{(2)}+b U_{\mu}^{(2)}+c G_{\mu}^{(2)}\right\rangle$ (transforming as a 2 -tensor under so(3) and a one-dimensional irrep under $u(1)$) and a onedimensional module $\left\langle a T_{0}^{(0)}+b U_{0}^{(0)}+c G_{0}^{(0)}\right\rangle$.

It turns out that the space spanned by the three 0 -tensors, one 1 -tensor and one 2 -tensor does not close under commutation. Hence, in the following we bring in two 2 -tensors. The space spanned by one 1 -tensor and two 2 -tensors does not form a Lie algebra, unless we also introduce a 0 -tensor:
(viii)

$$
\begin{aligned}
\mathrm{L}_{7}= & \left\langle G_{\kappa}^{(1)}, a T_{0}^{(0)}+b U_{0}^{(0)}+c G_{0}^{(0)}, a T_{\mu}^{(2)}+b U_{\mu}^{(2)}+c G_{\mu}^{(2)}, a^{\prime} T_{\nu}^{(2)}\right. \\
& \left.+b^{\prime} U_{\nu}^{(2)}+c^{\prime} G_{\nu}^{(2)}\right\rangle .
\end{aligned}
$$

This fourteen-dimensional vector space closes under commutation if $a b-c^{2}=0$ and $a^{\prime} b+a b^{\prime}=2 c c^{\prime}$; then $a^{\prime} b^{\prime}-c^{\prime 2} \neq 0$. The Lie algebra L_{7} is isomorphic to $\mathrm{L}_{7}^{+}=\operatorname{su}(3) \times P$ or $\mathrm{L}_{7}^{-}=\operatorname{sl}(3, R) \times P$, depending on the sign of $c^{\prime 2}-a^{\prime} b^{\prime} ; P=\left\langle a T_{0}^{(0)}+b U_{0}^{(0)}+c G_{0}^{(0)}\right.$, $\left.a T_{\mu}^{(2)}+b U_{\mu}^{(2)}+c G_{\mu}^{(2)}\right\rangle$ is a six-dimensional irreducible su(3) or $\operatorname{sl}(3, R)$ module.
(viii)

$$
\begin{aligned}
\mathrm{L}_{8}= & \left\langle G_{\kappa}^{(1)}, a^{\prime} T_{0}^{(0)}+b^{\prime} U_{0}^{(0)}+c^{\prime} G_{0}^{(0)}, a^{\prime} T_{\mu}^{(2)}+b^{\prime} U_{\mu}^{(2)}+c^{\prime} G_{\mu}^{(2)}, a T_{0}^{(0)}+b U_{0}^{(0)}\right. \\
& \left.+c G_{0}^{(0)}, a T_{\nu}^{(2)}+b U_{\nu}^{(2)}+c G_{\nu}^{(2)}\right\rangle .
\end{aligned}
$$

This is a fifteen-dimensional Lie algebra if $a b-c^{2}=0$ and $a^{\prime} b+a b^{\prime}=2 c c^{\prime}$; then $a^{\prime} b^{\prime}-$ $c^{\prime 2} \neq 0$. It is again a semidirect product $\mathrm{L}_{8}^{+}=\mathrm{u}(3) \times P$ or $\mathrm{L}_{8}^{-}=\mathrm{gl}(3, R) \times P(\pm$ is the sign of $c^{\prime 2}-a^{\prime} b^{\prime}$), where P is a six-dimensional irreducible module spanned by the 0 -tensor and 2-tensor with coefficients (a, b, c).

This exhausts all subalgebras of $\mathrm{sp}(3, R)$ containing so(3). The complete subalgebra chain is given in figure 1.

Until now only real linear combinations have been maintained. The above results are also valid for complex combinations (complex $a, b, c, a^{\prime}, b^{\prime}, c^{\prime}$) if the coefficients still satisfy

$$
\begin{equation*}
a^{\prime} b-a b^{\prime}(+\mathrm{cycl}), a b-c^{2}, a^{\prime} b^{\prime}-c^{\prime 2}, a^{\prime} b+a b^{\prime}-2 c c^{\prime} \in R \tag{19}
\end{equation*}
$$

Then it can be checked by means of (10)-(13) that the structure constants are still real coefficients.

Note that the subalgebras L_{1}, \ldots, L_{x} given in terms of coupled so(3) tensors can also be described in terms of the original cartesian products (1). For instance, by means of (1)-(5) and (14) one verifies that

$$
\begin{align*}
\left\langle a T_{0}^{(0)}+b U_{0}^{(0)}\right. & \left.+c G_{0}^{(0)}, a T_{\mu}^{(2)}+b U_{\mu}^{(2)}+c G_{\mu}^{(2)}\right\rangle \\
& =\left\langle(a+b+2 c) Q_{i j}+(-a-b+2 c) K_{i j}+\mathrm{i}(-a+b) S_{i j}\right\rangle \tag{20}
\end{align*}
$$

Figure 1. Subalgebra chain for $\mathrm{sp}(3, R) \rightarrow \mathrm{so}(3)$. The subalgebras L_{1} are described in the text. A line from left to right connecting L_{i} and L_{j} implies $L_{1} \supset L_{i}$; the lines connecting subalgebras from the upper part (starting from $L_{8}^{ \pm}$) with subalgebras from the lower part (starting from L_{3}) are broken.

Hence

$$
\begin{equation*}
\mathrm{L}=\left\langle L_{i j}, \alpha Q_{i j}+\beta K_{i j}+\gamma S_{i j}\right\rangle \tag{21}
\end{equation*}
$$

forms a nine-dimensional Lie algebra of type L_{5}. The algebra $\left\langle L_{i j}, S_{i j}\right\rangle$ arises when $\alpha=\beta=0$ and $\gamma \neq 0$, or equivalently when $a=-b \in \mathrm{i} R$ and $c=0$; it is clearly isomorphic to $\mathrm{gl}(3, R)$. Another realisation of $\mathrm{gl}(3, R)$ is the algebra $\left\langle L_{i j}, Q_{i j}-K_{i j}=x_{i} x_{j}-p_{i} p_{j}\right\rangle$; this Lie algebra is obtained for $\alpha=-\beta$ and $\gamma=0$, or equivalently for $a=b \neq 0$ and $c=0$. When $\alpha=\beta$ and $\gamma=0$, or $a=b=0$ and $c \neq 0$, the Lie algebra is $\left\langle L_{i j}, Q_{i j}+K_{i j}=\right.$ $\left.x_{i} x_{j}+p_{i} p_{j}\right\rangle$ and is isomorphic to $u(3)$. In general, one can check that $c^{2}-a b$ has the same sign as $\alpha \beta-\gamma^{2}$, hence (21) is $\mathrm{u}(3)$, so(3$) \times R^{[2]}$ or $\mathrm{gl}(3, R)$ when $\alpha \beta-\gamma^{2}$ is positive, zero or negative, respectively.

The realisation (10)-(13) given in terms of a pseudo p-boson π with angular momentum 1 can easily be extended to an arbitrary pseudo boson with angular momentum l. The Lie algebra that arises is the symplectic algebra $\operatorname{sp}(2 l+1, R)$. The commutation relations for such a realisation are simply a copy of (10)-(13) with $(-1)^{\kappa^{\prime \prime+1}}$ replaced by $(-1)^{\kappa^{\prime \prime}+1}$ and $\left\{\begin{array}{llll}k^{k} & k^{\prime} & k^{\prime \prime} \\ 1 & 1 & 1\end{array}\right\}$ by $\left\{\begin{array}{ccc}k^{\prime} & k^{\prime} & k^{\prime \prime} \\ 1 & 1 & 1\end{array}\right\}$.

References

Edmonds A R 1957 Angular Momentum in Quantum Mechanics (Princeton, NJ: Princeton University Press) Moshinsky M 1986 Int. Conf. on Nuclear Structure, Reactions and Symmetries, Dubrovnik, Yugoslavia (June 1986) (Singapore: World Scientific)

Rowe D J 1985 Rep. Prog. Phys. 48 1419-80

[^0]: † Senior Research Assistant NFWO (Belgium).
 \ddagger Senior Research Associate NFWO (Belgium).

